An assessment of wildlife road casulties – the potential discrepancy between numbers counted and numbers killed
نویسندگان
چکیده
منابع مشابه
Objects Counted by the Central Delannoy Numbers
The central Delannoy numbers, (dn)n≥0 = 1, 3, 13, 63, 321, 1683, 8989, 48639, . . . (A001850 of The On-Line Encyclopedia of Integer Sequences) will be defined so that dn counts the lattice paths running from (0, 0) to (n, n) that use the steps (1, 0), (0, 1), and (1, 1). In a recreational spirit we give a collection of 29 configurations that these numbers count.
متن کاملan investigation about the relationship between insurance lines and economic growth; the case study of iran
مطالعات قبلی بازار بیمه را به صورت کلی در نظر می گرفتند اما در این مطالعه صنعت بیمه به عنوان متغیر مستفل به بیمه های زندگی و غیر زندگی شکسته شده و هم چنین بیمه های زندگی به رشته های مختلف بیمه ای که در بازار بیمه ایران سهم قابل توجهی دارند تقسیم میشود. با استفاده از روشهای اقتصاد سنجی داده های برای دوره های 48-89 از مراکز ملی داده جمع آوری شد سپس با تخمین مدل خود بازگشتی برداری همراه با تعدادی ...
15 صفحه اولDo the Numbers and Locations of Road-Killed Anuran Carcasses Accurately Reflect Impacts of Vehicular Traffic?
Road-killed animals are easy and inexpensive to survey, and may provide information about species distributions, abundances, and mortality rates. As with any sampling method, however, we need to explore methodological biases in such data. First, how does an animal’s behavior (e.g., use of the center vs. periphery of the road) influence its vulnerability to vehicular traffic? Second, how rapidly...
متن کاملRestricted signed permutations counted by the Schröder numbers
Gire, West, and Kremer have found ten classes of restricted permutations counted by the large Schröder numbers, no two of which are trivially Wilf-equivalent. In this paper we enumerate eleven classes of restricted signed permutations counted by the large Schröder numbers, no two of which are trivially Wilf-equivalent. We obtain five of these enumerations by elementary methods, five by displayi...
متن کاملCovering numbers, dyadic chaining and discrepancy
is called the star-discrepancy of (z1, . . . , zN ). Here and in the sequel λ denotes the sdimensional Lebesgue measure. The Koksma-Hlawka inequality states that the difference between the integral of a function f over the s-dimensional unit cube and the arithmetic mean of the function values f(z1), . . . , f(zN ) is bounded by the product of the total variation of f (in the sense of Hardy and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Web Ecology
سال: 2002
ISSN: 1399-1183
DOI: 10.5194/we-3-33-2002